Astro2020 Science White Paper

Unveiling the Phase Transition of the Universe During the Reionization Epoch with Ly\(\alpha\)

Thematic Areas:
- □ Planetary Systems
- □ Star and Planet Formation
- □ Formation and Evolution of Compact Objects
- □ Cosmology and Fundamental Physics
- □ Stars and Stellar Evolution
- □ Resolved Stellar Populations and their Environments
- □ Galaxy Evolution
- □ Multi-Messenger Astronomy and Astrophysics

Principal Author:
Name: Steven L. Finkelstein
Institution: The University of Texas at Austin
Email: stevenf@astro.as.utexas.edu
Phone: (512) 471-1483

Co-authors: Marusa Bradac (UC Davis), Caitlin Casey (UT Austin), Mark Dickinson (NOAO), Ryan Endsley (Arizona), Steven Furlanetto (UCLA), Nimish Hathi (STScI), Taylor Hutchison (Texas A&M), Intae Jung (UT Austin), Jeyhan Kartaltepe (RIT), Anton M. Koekemoer (STScI), Rebecca L. Larson (UT Austin), Charlotte Mason (Harvard/Smithsonian CfA), Casey Papovich (Texas A&M), Swara Ravindranath (STScI), Jane Rigby (NASA GSFC), Dan Stark (Arizona), Isak Wold (NASA GSFC)

Abstract (optional): The epoch of reionization (6 \(\lesssim z \lesssim 10\)) marks the period in our universe when the first large galaxies grew to fruition, and began to affect the universe around them. Massive stars, and potentially accreting supermassive black holes, filled the universe with ionizing radiation, burning off the haze of neutral gas that had filled the intergalactic medium (IGM) since recombination (\(z \sim 1000\)). The evolution of this process constrains key properties of these earliest luminous sources, thus observationally constraining reionization is a key science goal for the next decade. The measurement of Ly\(\alpha\) emission from photometrically-identified galaxies is a highly constraining probe of reionization, as a neutral IGM will resonantly scatter these photons, reducing detectability. While significant work has been done with 8–10m telescopes, these observations require extremely large telescopes (ELTs) – the flux limits available from today’s 10m class telescopes are sufficient for only the brightest known galaxies (\(m < 26\)). Ultra-deep surveys with the Giant Magellan Telescope (GMT) and Thirty Meter Telescope (TMT) will be capable of detecting Ly\(\alpha\) emission from galaxies 2-3 magnitudes fainter than today’s deepest surveys. Wide-field fiber spectroscopy on the GMT combined with narrow-field AO-assisted slit spectroscopy on the TMT will be able to probe the expected size of ionized bubbles throughout the epoch of reionization, following up ~degree scale deep imaging surveys with the Wide Field Infrared Space Telescope. These data will provide the first resolved Ly\(\alpha\)-based maps of the ionized intergalactic medium throughout the epoch of reionization, constraining models of both the temporal and spatial evolution of this phase change.
Reionization: The Last Major Phase Transition

At the time photons from the surface of last scattering began their journey to our telescopes, the universe had cooled enough for hydrogen gas to become neutral. This was the state for the next few hundred million years — the so-called “dark ages”. Eventually, baryonic matter cooled and condensed in dark matter halos to form the first stars, galaxies, and growing supermassive black holes. These objects emitted hydrogen ionizing photons, burning away the cosmic haze of neutral gas. This reionization of the intergalactic medium (IGM) was the last major phase change in the universe, and is inextricably linked with the onset of the first luminous sources in our history. Therefore, understanding how reionization proceeds, both temporally and spatially, provides key constraints on the nature of these first luminous sources in the universe.

1 Present-Day Constraints on Reionization

Improving our knowledge of the epoch of reionization (EoR; hereafter 6 ≲ z ≲ 10) was a key focus of the New Worlds New Horizons decadal survey. At the end of this decade, while we have learned much about galaxies in this epoch (and their potential contribution to the ionizing background) from deep near-infrared imaging surveys with the Hubble Space Telescope (HST) and wide-field ground-based surveys [e.g., 14, 7, 27, 23, 1, 9, 8], our constraints on the evolution of the reionization process are presently poor. However, we do have a reasonable idea when reionization completed. Observations of the Gunn-Peterson trough in high-redshift quasars measure the neutral fraction \(Q_{\text{HI}}\) to be \(<1\%\) at \(z \approx 6\) [e.g., 10]. While this result is dependant on assumptions about the intrinsic shape of the quasar’s rest-ultraviolet (UV) spectrum, model-independent constraints agree that the neutral fraction is low at \(z \sim 6\), though constraints are looser \((Q_{\text{HI}} < 0.06 \pm 0.05\) at \(z \sim 5.9\); [26]). Significant neutral patches may be necessary to explain the most opaque stretches of the Ly\(\alpha\) forest at \(z = 5.5 – 6\); in particular, the observed \(\sim 110^{h^{-1}}\) comoving Mpc Ly\(\alpha\) trough [3, 22]. However, there is little evidence that reionization competed at later times than \(z \sim 5.5\).

While knowledge of the completion redshift is key, understanding early structure formation requires constraints on the entire process of reionization. Observations of the optical depth due to electron scattering from the cosmic microwave background imply that the average redshift where a region of the universe undergoes reionization is at \(z \sim 7–8\) [33]. Observations of the few known \(z \geq 7\) quasars [28, 5, 16, 2] find \(Q_{\text{HI}} > 10\%\) at \(z = 7\), and possibly as high as \(50\%\) at \(z = 7.5\). However, these measurements again depend on our ability to model the intrinsic quasar spectra, and many such objects are needed to probe sufficient sight-lines to gain a statistical measure of the IGM, while quasars are apparently exceedingly rare at \(z > 7\).

What is needed is the ability to derive statistically significant measurements of the neutral fraction at a wide range of redshifts throughout the EoR. While techniques such as 21 cm line mapping will ultimately provide detailed topographical information on the neutral state of the IGM, the sensitivity needed requires the Square Kilometer Array, which will not become fully operational until into the 2030s. A technique available now, which is sensitive to a wide range of neutral fractions, probes the entire epoch in question, and provides information on the spatial nature of reionization, is the spectroscopic measurement of Ly\(\alpha\) emission from galaxies.

2 Mapping Reionization with Ly\(\alpha\) Tomography

Ly\(\alpha\) photons are sensitive probes of reionization as they are resonantly scattered by neutral hydrogen, becoming spatially diffused to extremely low surface brightness levels when passing through regions of neutral H\(\text{I}\), rendering this emission near-impossible to detect. While this limits the use of Ly\(\alpha\) as a spectroscopic redshift tracer for galaxies (especially with 10m telescopes), it makes
the observability of this complicated line directly relatable to the neutral fraction in the IGM in
the vicinity of an observed galaxy. In the post-reionization universe Lyα is near ubiquitous, being
detectable with 10m telescopes in \(\gtrsim 50\%\) of galaxies at \(z=6\) [38], and is expected to be even more
prevalent at higher redshifts, due to a decrease in dust attenuation [39, 13, 6]. An observed drop in
the fraction of galaxies exhibiting Lyα emission at \(z > 6\) (typically parameterized by comparing
the equivalent width [EW] distributions at two redshifts, making significant use of non-detections,
modeling all effects of incompleteness) may signal a rapidly evolving IGM neutral fraction.

Due to the recent availability of photometrically-selected \(z = 6–10\) galaxy candidates [e.g.,
14, 7, 8, 23, 35], and the advent of multi-object red-sensitive optical and near-IR spectrographs
(e.g., VLT/FORS2, Keck/MOSFIRE), this experiment is now possible. Studies have found that
Lyα is observable from fewer galaxies than expected at \(z=6.5–7\) (<20%), implying a non-zero
neutral fraction in the IGM [e.g., 15, 32, 36, 30, 12, 42, 41, 37, 20]. Present constraints are poor
due to the low number of detected Lyα emission lines at \(z>7\). This is primarily due to the limited
spectroscopic sensitivity for such distant galaxies, as low levels of Lyα emission with rest-EW <
20 Å are only accessible for extremely bright galaxies over small fields (\(m < 26\); modestly fainter
with lensing, e.g. [17]). Additionally, as these observations are expensive and even MOSFIRE
has a limited field-of-view (FoV; 6′ × 4′), current observations probe scales much smaller than
the expected sizes of ionized bubbles at the end of reionization (Figure 1). Consequently, out
of the now >1000 distant galaxy candidates known, robust (>5-σ) spectroscopic Lyα detections
exist for only a ~dozen galaxies at \(z>7\). While present observations are consistent with a neutral
fraction of ~50% by \(z \sim 7\) [25], the limited spectroscopic depth means that these constraints come
predominantly from non-detections, which could occur for a variety of reasons.

Evidence exists that these photons are there to be detected when the sensitivity is high enough.
Recent results from an extremely deep 16 hr integration with MOSFIRE find Lyα detected in
modestly bright (\(H \sim 26\)) galaxies at \(z > 7.5\) [19]. Near-IR spectrographs on Extremely Large
Telescopes (ELTs; D>20 m) will provide a tremendous leap in our spectroscopic sensitivity, al-
lowing the measurement of Lyα emission from faint galaxies for the first time. Figure 1 shows
an image from a reionization simulation highlighting the evolution of the scales of ionized and
neutral structures throughout the epoch of reionization, from \(\sim 1'\) at \(z \sim 10\), to \(\sim 20'\) at \(z \sim 7\) [29].
This creates a natural synergy between both planned US-led ELTs. The Giant Magellan Telescope
(GMT), with its wide FoV, will be able to probe one or more of these ionized structures at the
end of reionization, while the Thirty Meter Telescope (TMT) FoV is well matched to probe the
formation of the first reionized regions, where the increased collecting area may be needed.

Ultradeep spectroscopy will also remove a key systematic hindering current analyses: when
Lyα is not detected, the spectroscopic redshift of the source is not known. One must then use
the estimate of the photometric redshift probability distribution function to assess the likelihood
that the expected wavelength of Lyα is contained in the observed wavelength range. However, in
particular at \(z > 7\), these redshift PDFs are completely uncalibrated, and the contamination rate
by lower-redshift interlopers is also highly uncertain, and is likely dependent on the quality of the
photometric data [31]. Beyond Lyα, the full rest-frame UV spectra contain UV emission lines
from metals, including C III λλ1907,1909, O III λλ1661,1666, He II λ1640, and C IV λλ1548,
1550, [40, 18]. These lines can be comparable in strength to Lyα, and thus detectable alongside
Lyα in the same observation (if the observed wavelength range is large enough). This will allow
the use of only spectroscopically confirmed galaxies when inferring the neutral fraction, which is
not possible today. These lines will also allow a better understanding of the stellar populations and
ISM conditions (see companion white paper by Papovich et al.), enabling more accurate models of the intrinsic Lyα flux from these objects, a key uncertainty in reionization inferences.

3 Technological Requirements

The GMT and TMT change the game by allowing detailed study of faint galaxies in the EoR. Only these facilities will allow the mapping of the evolution of ionized regions in the IGM by measuring Lyα emission over large scales encompassing the expected sizes of ionized bubbles across the EoR. Here we briefly discuss the technological requirements needed to enable this key science result.

Sensitivity: The key advance here is the large aperture of the GMT/TMT. Ultra-deep integrations on the Keck 10m telescope still only reach modest Lyα EWs ($\sim 30\,\text{Å}$) for bright ($m < 26$) galaxies [19]. Fully probing reionization requires reaching EWs $\sim 2 \times$ smaller for galaxies two magnitudes fainter. In Figure 2, we show an example of a simulated ionized bubble mapped with Lyα tomography. The ~ 50 Lyα emitters in this region sufficiently sample the extent of the bubble enabling robust estimates of the bubble size and morphology. This population of Lyα emitters was predicted by utilizing the UniverseMachine model [4] to predict the UV luminosities of halos within the Bolshoi-Planck dark matter simulation [21]. Halos were then assigned intrinsic Lyα EWs and velocity offsets from the [25] parameterizations. The intrinsic EWs were then converted into observed EWs by calculating the damping wing transmission fraction [24] given the distance from the halo to the neutral boundary along the line of sight and Lyman-alpha velocity offset. As shown in this figure, the bulk of the galaxies have Lyα EWs of $\sim 15–30\,\text{Å}$. For a $m = 28$ galaxy at $z = 8$, this corresponds to an integrated emission line flux of $\sim 5 \times 10^{-19}\,\text{erg s}^{-1}\text{cm}^{-2}$. Using the exposure time calculator for the GMT concept single-slit SuperFIRE near-IR spectrograph (R. Simcoe, private communication), we find that these relatively weak emission lines are detectable in 30 hours at a UV continuum magnitude of 28 (Fig 2, right). For the TMT, the increase in collecting area combined with full AO will allow TMT to detect comparably strong emission lines one magnitude fainter ($m = 29$) in \sim-half the exposure time.
Instrumentation: The sensitivity achievable by both the GMT and TMT is sufficient for this science goal. Both telescopes will require multi-object near-IR spectrographs, as ultra-deep exposures will only be worthwhile when done with decently high multiplexing. With the GMT, the MANIFEST fiber system will patrol a 20′ diameter field-of-view (where the central ~10′ benefits from a GLAO correction) with ~1000 0.75′′ fibers. For this science goal, we require a moderate resolution spectrograph over the Y, J and H-bands. The resolution must be moderate (R ~2000-3000) to maximize the space between telluric emission lines, while not splitting the light from these faint, distant galaxies too finely. A simple instrument consisting of the incident light cross-dispersed into two channels (Y+J and H), each with a HAWAII-4RG detector, fed by a single slit populated by MANIFEST red-side fibers would be suitable. Using the reference luminosity functions from [11], we estimate the number of galaxies where Lyα is observable, finding that a single MANIFEST pointing can simultaneously observe ~600 galaxies in the Y+J channel (7 ≲ z ≲ 10) to m =28, and another ~10 in the H channel (11 ≲ z ≲ 14). A 30 hour (~4 night) integration with GMT should reach rest-EWs ~15–20 Å at m =28, sufficient to map ionized bubbles towards the end of reionization (Fig 2). Due to the extreme multiplexing advantage, such a spectrograph should be a high priority for early in the GMT’s lifetime.

The TMT has a planned near-IR MOS called IRMS, capable of observing up to 46 objects over a 2′ × 0.6′ field-of-view, operating behind the TMT AO system. TMT+IRMS can best probe towards the beginning of reionization, where the scales of interest are small, encompassed within a single IRMS FoV (Fig 1). The larger collecting area and full AO correction will enable emission line flux limits near to ~10\(^{-19}\) erg s\(^{-1}\) cm\(^{-2}\) in ~two nights of integration, probing Lyα emission from multiple galaxies ~1 mag deeper than GMT (m=29).

Lyα observations are also possible with JWST. While JWST will measure key physical properties allowing us to estimate the ionizing photon production in galaxies, the JWST/NIRSpec FoV is very small (Fig 1), thus wide field surveys reaching 1 deg\(^2\) are impractical, and the throughput of NIRSPEC drops at λ <1.2 µm. Additionally, the ELTs (with GLAO) have better sensitivity than JWST in the near-IR. Finally, though VLT+MOONS and Subaru+PFS can probe similar spatial scales as GMT’s MANIFEST fiber system, the significantly smaller collecting area will make achieving the necessary depths to probe Lyα from fainter galaxies prohibitively expensive.

The Galaxy Sample: The requirements for this science goal are a large sample of galaxies with relatively high sky density over wide fields. As shown in Figure 1, the relevant scales at the end of reionization are \(\gtrsim 20′\), which sets the minimum region over which we need to select galaxies. This is larger than any contiguous HST deep field, and this will also hold true for JWST (while one ~deg\(^2\) survey may happen with Webb, multiple are unlikely given the large overheads). Performing this study over large contiguous fields, ideally multiple such fields well-separated in the sky, is crucial
to overcome both halo cosmic variance and variance in the propagation of ionized bubbles. By the end of the next decade, when GMT and TMT are operating at full capacity, NASA will have launched the Wide Field Infrared Survey Telescope (WFIRST). WFIRST’s Wide Field Imager has a FoV of ~ 0.28 deg2, $\sim 100 \times$ the area of JWST’s NIRCam. A single WFIRST pointing allows a contiguous mapping of a field size expected to contain several ionized bubbles to $m < 29$, and is larger than the GMT+MANIFEST FoV (Figure 3). These observations of Lyα from individual galaxies will be important for determining the purity of whole-sky intensity mapping surveys (e.g. SPHEREx) where $z \sim 1-2$ interlopers dominate the $z > 7$ Lyα intensity mapping signal [34, 43].

Summary: Observing Lyα to faint flux levels over > 1 deg2 will allow the first direct probes of the IGM ionization state over the scales where we expect to see several ionized and neutral bubbles across the full EoR. This requires sensitive near-IR spectrographs on 25–30 m-class telescopes (like the GMT and TMT). These maps of Lyα detections (and limits) will directly trace these ionized bubbles, constraining the neutral fraction by directly measuring the evolution of the Lyα EW distribution (more constraining than the simpler Lyα detection fraction [25, 20]), measuring the correlation function of Lyα emitters, and measuring the cross-correlation between Lyα and 21 cm emission from neutral gas traced by the Square Kilometer Array (SKA; c. 2030). Performing these analyses over several redshift slices from $z = 6 - 10$ will probe the temporal evolution of reionization. A survey covering the relevant scales and depths during both the early and late stages of the reionization process is possible with a modest investment (\sim a few 10’s of nights) on both the GMT and TMT. Such a survey would provide spectra for $\sim 10,000$ galaxies at $6 \lesssim z \lesssim 10$, a majority of which we expect to be spectroscopically confirmed via C III] and/or Lyα emission. This will comprise an immense archival sample of galaxy spectra in the EoR, suitable for a variety of analyses, as well as followup observations (e.g., with ALMA, or future space telescopes). These reionization maps will also provide targets for future, large, space-based telescopes, such as the 15m NASA LUVOIR concept, to perform a full census of galaxies in both ionized and neutral regions, to constrain the impact of reionization on galaxy formation physics.
References

